
Try Anything Once:
A Case Study using

NUCCOR

Rebecca Hartman-Baker
Scientific Computing Group

May 11, 2010

2

Outline

• Nuclear Physics in 5 slides or less
• Motivation for this work
• Experiments
• Results
• Addendum: Cray compiler and loop optimization
• Conclusions

3

Nuclear Physics: Basics

• Nucleus consists of protons and neutrons
•  Like electrons, protons and neutrons in energy-level shells
• Some configurations more stable than others

4

Nuclear Physics: Table of Nuclides

Source: h*p://fys246.nuclear.lu.se/images/nucchrt2.gif 

5

Nuclear Physics: NUCCOR code

• Nuclear Coupled-Cluster Oak Ridge code
• CCSD: approximates interactions between nucleons using

single and double excitation states
• Essentially, solving huge set of coupled nonlinear equations
• Written in Fortran 90, with modules, derived datatypes
• Runs are constrained primarily by memory – lots of data,

(relatively) low flop count

6

Motivation: My Job

•  Improve code so that it
– Scales better
– Runs faster

• My (not-so-)secret techniques
–  Investigate/model performance of existing code
–  Implement better parallel I/O
–  Implement load balancing
– Clean up wasteful/bad coding practices
– Help code adhere to Fortran standards

7

Motivation: Events
• Grad student’s version of code segfaulted only with Intel

compiler, only with optimizations turned on, only on Jaguar
–  First guess: seat-to-keyboard interface problem
–  Turned out to be compiler bug!

•  Talked to nuclear physicists
–  Depend heavily on Intel compiler
–  Reluctant to take risks with code

•  I’m free to take risks and optimize code – I’m in this for
performance, not science!
–  Make sure that optimizations do not result in incorrect answers, but

nothing new comes out of my benchmarks

8

Motivation: Questions

• What is happening in this code?
– Where is the most time spent?
– What are the bottlenecks?

• How does the compiler impact performance?
– Do compiler optimizations really matter?
– Do different compilers perform differently?

9

Experiments: Performance

•  Instrumented optimized code with Craypat
–  module load xt-craypat apprentice2
–  make clean; make
–  pat_build –O apa mycode (this creates executable

called mycode+pat)
–  qsub patscript

• Generated reports using pat_report (this took a while)
• Viewed reports with Apprentice2: app2 file.ap2

(loading this also took a while)

10

Craypat Results

11

Craypat Results

• Most time spent in t2_eqn_store_p_or_n
•  This function full of deeply nested loops (very ugly)
•  Text report provides info on which lines within subroutine

take up the most time
• Many different pieces take up small portions of time, but

overarching theme is time taken by performing iterative
updates

12

Experiments: Compiler Tests

• Compiled NUCCOR with all 5 compilers available on Jaguar
(Cray, GNU, Intel, Pathscale, PGI)

•  For each compiler, 6 different optimization levels (-O0, -O1, -
O2, -O3, default, high)

• Ran each executable 3 times on 16O benchmark, 441
processors, using 8 cores/node on Jaguarpf:
–  aprun -n 441 -S4 nuccor.exe

• Checked that each executable produced correct results
(what good is getting the wrong answer quickly?)

13

Experiments: Compiler Information

Compiler  Version  High Op1miza1on flags 

Cray  7.1.5 (default)  -O3

GNU  4.4.2 (default)  -O2 -ffast-math -fomit-frame-pointer
-mfpmath=sse

Intel  11.1.046 
(default) 

-O3

Pathscale  3.2 (default)  -Ofast

PGI  9.0.4 (default)  -fast

14

Results: -O0 Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

Cray  GNU  Intel  Pathscale  PGI 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 

15

Results: -O1 Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

Cray  GNU  Intel  Pathscale  PGI 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 

16

Results: -O2 Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Cray  GNU  Intel  Pathscale 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 

17

Results: -O3 Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Cray  GNU  Intel  Pathscale 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 

18

Results: Default Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

Cray  GNU  Intel  Pathscale  PGI 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 

19

Results: High Optimization Level

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

Cray  GNU  Intel  Pathscale 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  IteraLon Time 

20

Results: Aggregate Performance Results

O0 
O1 

O2 
O3 

No flags 
OpLmal 

0 

1000 

2000 

3000 

4000 

5000 

Cray 
GNU 

Intel Pathscale 
PGI 

El
ap

se
d 
Ti
m
e 
(s
ec
on

ds
) 

Compiler Performance by Op1miza1on Level 

O0  O1  O2  O3  No flags  OpLmal 

21

Results: Best Performance at Each
Optimization Level

Op1miza1on 
Level 

Top 
Performer 

2nd Best 
Performer 

% Difference in wall1me between 
1st and 2nd best performers 

‐O0  PGI  Cray  3.54 

‐O1  Intel  Cray  5.88 

‐O2  Cray  GNU  25.2 

‐O3  Cray  GNU  27.3 

No flags  Cray  Intel  26.4 

OpLmal  Pathscale  Cray  20.5 

Overall winner: Cray compiler! 

22

Addendum: Cray Compiler

•  I discussed results with Jeff Larkin, including surprise
Pathscale victory

• He suggested sending code to Cray compiler developers, so
they can improve their compiler

•  Last week I received very nice, very detailed analysis of
where Cray compiler did not optimize
–  Cray also opened ticket against this issue, and will fix it in next

release

•  Lessons can be applied to code and improve performance
across all compilers

23

Addendum: Loop Optimization
• Nuccor contains

many deeply
nested loops
(depth 4)

•  Loops written
symmetrically for
readability

• But, not easy for
compiler to
optimize

ii=0
do b=below_ef+1,tot_orbs
do j=1,below_ef
 ii=ii+1
 jj=0
 do a=below_ef+1,tot_orbs
 do i=1,below_ef
 jj=jj+1
 t2_ccm_eqn%f5d(a,b,i,j)= t2_ccm_eqn%
 f5d(a,b,i,j) + tmat7(ii,jj)
 t2_ccm_eqn%f5d(b,a,i,j)= t2_ccm_eqn%
 f5d(b,a,i,j) - tmat7(ii,jj)
 t2_ccm_eqn%f5d(a,b,j,i)= t2_ccm_eqn%
 f5d(a,b,j,i) - tmat7(ii,jj)
 t2_ccm_eqn%f5d(b,a,j,i)= t2_ccm_eqn%
 f5d(b,a,j,i) + tmat7(ii,jj)
 ops_cnt=ops_cnt+4
 end do
 end do
end do
end do

24

Problems in Loop

•  Loop is easy for humans to read
• But, strides through memory cause cache thrashing and

increased bandwidth use
• With below_ef = 16 and tot_orbs = 336,

each cache line of t2_ccm_eqn%f5d will have to be
reloaded 8 times

• Also, array tmat7(ii,jj) referenced through 2nd
subscript, so poor stride

• All compilers (except maybe Pathscale with -Ofast) fail
to interchange loop nesting

25

Loop Memory Access (Poor Stride)

i

j

L=i+jI

... ...

26

Loop Memory Access (Good Stride)

i

j

L=i+jI

... ...

27

Compiler Optimizations
• Cray compiler will output annotated version of source file

–  ftn -rm mycode.f90
–  Outputs mycode.lst

• Examine annotated file to figure out what’s going on
 Primary Loop Type Modifiers
 ------- ---- ---- ---------
 A - Pattern matched a - vector atomic memory operation
 b - blocked
 C - Collapsed c - conditional and/or computed
 D - Deleted f - fused
 E - Cloned
 I - Inlined i - interchanged
 M - Multithreaded m - partitioned
 P - Parallel p - partial
 R - Redundant r - unrolled
 s - shortloop
 V - Vectorized t - array syntax temp used
 w - unwound

28

Annotated Loop
371.  ii=0
372. 1--------< do b=below_ef+1,tot_orbs
373. 1 2------< do j=1,below_ef
374. 1 2 ii=ii+1
375. 1 2 jj=0
376. 1 2 3----< do a=below_ef+1,tot_orbs
377. 1 2 3 r8-< do i=1,below_ef
378. 1 2 3 r8 jj=jj+1
379. 1 2 3 r8 t2_ccm_eqn%f5d(a,b,i,j)=… +tmat7(ii,jj)
380. 1 2 3 r8 t2_ccm_eqn%f5d(b,a,i,j)=… -tmat7(ii,jj)
381. 1 2 3 r8 t2_ccm_eqn%f5d(a,b,j,i)=… -tmat7(ii,jj)
382. 1 2 3 r8 t2_ccm_eqn%f5d(b,a,j,i)=… +tmat7(ii,jj)
383. 1 2 3 r8 ops_cnt=ops_cnt+4
384. 1 2 3 r8-> end do
385. 1 2 3----> end do
386. 1 2------> end do
387. 1--------> end do

Unroll loop 8 times

29

Loop Reordering: Two Things to Try

•  Improve stride: reorder so that tmat7 is accessed by
consecutive row, not column

•  Loop fission: put all f5d(a,b,:,:) in one loop, all
f5d(b,a,:,:) in another

•  Test these two ideas in simple loop unrolling code

30

Test Code: Original Loop

ii = 0
do b = abmin, abmax
 do j = ijmin, ijmax
 ii = ii+1
 jj = 0
 do a = abmin, abmax
 do i = ijmin, ijmax
 jj = jj+1
 f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj)
 f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj)
 f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj)
 f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj)
 end do
 end do
 end do
end do

31

Test Code: Improved Stride

do i = ijmin, ijmax
 jj = 0
 do a = abmin, abmax
 do j=ijmin, ijmax
 jj = jj+1
 ii = 0
 do b = abmin, abmax
 ii = ii+1
 f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj)
 f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj)
 f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj)
 f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj)
 end do
 end do
 end do
end do

32

Test Code: Loop Fission

ii = 0
do j = ijmin, ijmax
 do b = abmin, abmax
 ii = ii+1
 jj = 0
 do i = ijmin, ijmax
 do a = abmin, abmax
 jj = jj+1
 f5d(a,b,i,j) =
 f5d(a,b,i,j) +
 tmat7(ii,jj)
 f5d(a,b,j,i) =
 f5d(a,b,j,i) -
 tmat7(ii,jj)
 end do
 end do
 end do
end do

jj = 0
do i = ijmin, ijmax
 do a = abmin, abmax
 jj = jj+1
 ii = 0
 do j = ijmin, ijmax
 do b = abmin, abmax
 ii = ii+1
 f5d(b,a,i,j) =
 f5d(b,a,i,j) -
 tmat7(ii,jj)
 f5d(b,a,j,i) =
 f5d(b,a,i,j) +
 tmat7(ii,jj)
 end do
 end do
 end do
end do

33

Test Code: Cray Compiler Behavior

• Original Loop: unrolled 8 times
•  Improved Stride: conditionally vectorized, unrolled 2 times
•  Loop Fission: 1st loop vectorized, partially unrolled 4 times;

2nd loop vectorized, unrolled 4 times

34

Test Code: Performance of All Compilers

0 

5 

10 

15 

20 

25 

30 

Cray  GNU  Intel  Pathscale  Pathscale 
Ofast 

PGI W
al
l C
lo
ck
 T
im

e 
fo
r 
2 
It
er
a1

on
s 
(s
ec
on

ds
) 

Compiler 

Original Loop  Improved Stride  Loop Fission 

35

Conclusions

•  Things I learned from this exercise
–  Some parts of code were not standard Fortran (They are now!)
–  All optimizations produced identical results for this computation
–  Cray compiler is very good with Fortran, as advertised
–  Cray compiler developers very responsive to user feedback
–  Loop ordering makes HUGE difference
–  Try anything once!

36

Acknowledgments

•  A very big thank-you to
–  Hai Ah Nam
–  David Pigg
–  Jeff Larkin
–  Nathan Wichmann
–  Vince Graziano

•  This work was supported by the US Department of Energy under
contract numbers DE-AC05-00OR22725 (Oak Ridge National
Laboratory, managed by UT-Battelle, LLC).

•  This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-
AC05-00OR22725.

